

12-port sector/multibeam antenna, 4x 694–960 MHz 65° HPBW and 8x 1695–2400 MHz 4x 33°HPBW, 6x RET with tilt indicators

- All Internal RET actuators are connected in "Cascaded SRET" configuration
- Uses the 4.3-10 connector which is 40 percent smaller than the 7-16 DIN connector
- Enhances network capacity through six sectors on high band while maintaining low band coverage layer through three sectors with only three antenna faces

OBSOLETE

This product was discontinued on: November 30, 2023

Replaced By:

RR2VV-6533D-R6 12-port sector/multibeam antenna, 4x 698-960 MHz 65° HPBW and 8x 1710-2690 MHz 4x 33°

HPBW, 6x RET

General Specifications

Antenna Type Multibeam

Band Multiband

Grounding TypeRF connector inner conductor and body grounded to reflector and

mounting bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Copper | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 8

RF Connector Quantity, mid band 0

RF Connector Quantity, low band

RF Connector Quantity, total 12

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

ANDREW®
an Amphenol company

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal RET High band (4) | Low band (2)

Power Consumption, idle state, maximum 1 W

Power Consumption, normal conditions, maximum 8 W

Protocol 3GPP/AISG 2.0 (Single RET)

Dimensions

Width 498 mm | 19.606 in

Depth 197 mm | 7.756 in

Length 2688 mm | 105.827 in

Net Weight, without mounting kit 54 kg | 119.049 lb

Array Layout

Array	Freq(MHz)	Conns	RET (SRET)	AISG RET UID
R1	694-960	1-2	1	CPXXXXXXXXXXXXXXX
R2	694-960	3-4	2	CPXXXXXXXXXXXXXXXX
Y1	1695 – 2400	5-6	3	CPXXXXXXXXXXXXXXXY1
Y2	1695 – 2400	7-8	4	CPXXXXXXXXXXXXXXY2
Y3	1695 – 2400	9-10	5	CPXXXXXXXXXXXXXXXX
Y4	1695 – 2400	11-12	6	CPXXXXXXXXXXXXXXXY4

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2400 MHz | 694 – 960 MHz

Polarization ±45°

Total Input Power, maximum 700 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	880-960	1695-1880	1850-1990	1920-2180	2300-2400
Gain, dBi	15.7	16	16.4	17.9	18.7	19.3	19.2
Beam Centers, Horizontal, degrees				±27	±27	±27	±27
Beamwidth, Horizontal, degrees	67	64	61	32	31	30	30
Beamwidth, Vertical, degrees	8.8	7.8	7.4	7.3	6.9	6.5	5.7
Beam Tilt, degrees	2-12	2-12	2-12	2-12	2-12	2-12	2-12
USLS (First Lobe), dB	18	19	19	17	17	18	22
Front-to-Back Ratio at 180°, dB	32	31	31	35	35	36	34
Isolation, Cross Polarization, dB	28	28	28	25	25	25	25

Page 3 of 5

Isolation, Inter-band, dB	30	30	30	30	30	30	30	
Isolation, Beam to Beam, dB				17	17	17	17	
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	
PIM, 3rd Order, 2 x 20 W, dBc	-150	-150	-150	-150	-150	-150	-150	
Input Power per Port at 50°C, maximum, watts	300	300	300	150	150	150	150	

Mechanical Specifications

Mechanical Tilt Range 0°-12°

 Wind Loading @ Velocity, frontal
 1,070.0 N @ 150 km/h (240.5 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 375.0 N @ 150 km/h (84.3 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 1,385.0 N @ 150 km/h (311.4 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 880.0 N @ 150 km/h (197.8 lbf @ 150 km/h)

Wind Speed, maximum 241.4 km/h (150 mph)

Packaging and Weights

 Width, packed
 565 mm | 22.244 in

 Depth, packed
 309 mm | 12.165 in

 Length, packed
 2935 mm | 115.551 in

 Weight, gross
 75 kg | 165.347 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Above maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant/Exempted UK-ROHS Compliant/Exempted

Included Products

BSAMNT-4 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.

Kit contains one scissor top bracket set and one bottom bracket set.

BSAMNT-M4 – Middle Downtilt Mounting Kit for Long Antennas for 2.4 - 4.5 in (60 - 115 mm) OD round

members. Kit contains one scissor bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

